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Goals of Injection Design R&D

• Produce a technically sound 8 GeV H- transport and 
injection design for the utilization of a 2 MW 
Superconducting Linac as an injector into the Main 
Injector in support of the High Intensity Neutrino 
Source (HINS) Program

• If there are delays in the effort “fast track” to the ILC 
due to either cost or R&D issues, we want to have all 
technical issues regarding transport & injection 
resolved so that construction could proceed rapidly. 

• Generate a detailed Design Report and cost estimate 
for all required systems
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Strategy for Injection Design R&D
• Build upon previous design work by W. Chou, A. Drozhdin, and others.
• 2004 Workshop-> concluded that the design parameters were valid & 

performance could be reliably extrapolated from current experience
• Produce a conceptual design which addresses 

– the relevant technical issues (such as control of stripping losses in transport, 
collimation design, un-controlled losses during injection, foil issues (material, 
thickness, environment), longitudinal injection dynamics, and magnetic designs.

• Review the conceptual design to uncover any technical risks/design issues
– Address these issues folding in new or updated information-> REVISE DESIGN

• Detail device design
• Produce final design document with cost estimate
• Other Steps to assure a successful Design

– Collaboration with BNL
• Review of current conceptual Design
• Optimization of Foil-stripping Injection system
• (Design & fabrication of Laser profile monitor system)

– Additional system reviews as necessary
– Learn from SNS experience (energy jitter, collimation success, foil & laser stripping)
– Utilize expertise at FNAL from Accelerator, Technical, and Particle Phys. Div. 
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MI H- Injection System – Technical Issues

• Main Injector lattice modifications
• Design Concepts
• Optimization of Injection Layout
• Longitudinal Dynamics
• Detailed Design of Injection Components
• Injection Absorber Design
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MI H- Injection System (MI modifications)

38 m

Current MI-10

MI-10 for H- Injection

H-

• Flexible beta at foil
• Zero (Small) Dispersion in straight
• 6 new quad circuits
• Power IQC/IQD trim coils in 

reminder of ring (with QF & QD) for 
tune control ->MTF measurements

• Minimal beta function distortion
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• Fixed Chicane bump
• Phase space painting
• Flexible injection optics in 

transport and ring
• Zero (small) dispersion in 

ring and transport line
• Parallel beams in ring and 

transport line @ foil (α = 0)
• HB3 dipole separates H+, H0
• Utilize HB3 fringe field

– for prompt conversion of 
excited H0 (n>=2) to protons 
(foil on rising field)

– Lorentz stripping of H-
missing foil (lifetime ~E-11 s)

• Modification of MI 
– Allowed this design to proceed 

MI H- Injection System – Design Concepts

Foil in front on 1.2T field

H-

H+H0 ,H-

start

end

closed orbit
(DC bumps)

foil
inj absorber

1.2T558G

Painting trims

38 meters
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• 800 MeV data reported by 
Gulley, et.al scaled to 8 GeV 
by β-2. 

• This scaling matches data 
from FNAL @ 200 MeV

• Red curve probability of 
stripping to state n=1,2.

• Relative yield of n>=3 much 
smaller

• Mohagheghi, et.al.  resolved 
relative yield for 800MeV 
between n=1 and 2 as 28 
and 130, respectivly. 

• Implies at 250 ug/cm2
– 86% protons
– 11% H0(n=2)->strip to H+
– 03% H0(n=1)-> to absorber

Production H0 and H- by Stripping Foil

• Investigate additional measurements at 400 MeV 
& > 800 MeV to verify energy scaling and n=1,2 
relative yields
– FNAL (?)    SNS Data (?)
– BNL experiments 

C arbo n Stripping F o il Yield at 800 M eV and 8GeV
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Use of End Field for Control of Excited States

• Minimize probability for excited 
states being stripped outside the 
acceptance of the MI by 
downstream magnetic field -> leads 
to uncontrolled loss

• Data for lifetime of Stark states of 
8 Gev H0 as a function of magnetic 
field corresponding to its rest 
frame electric field see by the atom.

• Calculations for 8 GeV were done 
by W.Chou, Alexandr Drozhdin 
and presented at the 2004 
Workshop

• Path length for 1E-11 sec is approx 
3 mm in lab frame

• For 2” fringe field -> 23.6T/m 
gradient -> ∆θ ~7µr
– Requires careful design of chicane 

magnet end fields

SNS foil here

Field 3rd chicane
Following foil
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MI H- Injection System- Optimization 

• Optimization of Foil-Stripping Injection System to 
maximize stripping efficiency and foil lifetime and 
minimize uncontrolled losses 
– Lattice functions of circulating and injected beam
– Foil material, thickness, and support structure
– Position / orientation of foil in Chicane #3 fringe field
– Phase space painting strategies

• BNL Collaboration to provide assistance
• Utilize tracking program STRUCT (FNAL) and ORBIT 

(SNS implementation) for optimization
• Goal is to ultimately perform an end-to-end simulation 

with all known effects and errors  (multiple codes)
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MI H- Injection System- Longitudinal Dynamics

• Specifications on energy/phase jitter, excitation errors, 
etc. are defined by MI requirements
– 325 Mhz chopper key to pseudo-synchronous transfers

• Roughly 2 out of every six 325 Mhz bunches chopped
• Turn by turn longitudinal distribution evolution

– Initial ESME simulations with two RF freq systems included 
uniform distribution with space charge (Phil Yoon) 100% capture 
at 270 turns with PD bunch intensities 

– Ultimate ESME simulations must include 325 Mhz micro-bunch 
structure in MI 52.8Mhz bucket AND include space charge, beam 
loading, longitudinal impedances, instabilities, longitudinal 
painting, etc.

– Simulations are on-going
– Results feed back into specifications for T.L. de-buncher cavity
– Data from SNS energy/phase jitter to be used for confirmation
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MI H- Injection System- Design of Injection Components

• Chicane dipole magnetic design (B~1.2T)
– Wide aperture, gap consistent with remainder of MI (i.e. 2 inches) 
– End field shape and gradient important 
– Generate detailed field specifications for each magnet
– 3D model

• Injection kicker dipole (ring & beam line)
– Pure dipole (~2kG-m) , 1kHz bandwidth

• Foil changer unit 
• Electron catcher
• Status and strategy

– Current design is conceptual (with basic param: l, w ,g , B, end field, etc)
– BNL Review of transfer line and injection conceptual design
– As injection system matures, move into detailed magnetic design (2&3D)
– Mechanical design and construction details
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MI H- Injection System- Injection Absorber Design

• Specifications for beam power and shielding efficiency
– Beams doc 2187 (power and Radiation Safety Guidelines)

• Shielding design (design underway)
– Shielding materials (how compact:  internal or external to tunnel )
– Use MARS14 code for full scale Monte Carlo and e-m shower simulations in 

absorber, lattice elements, shielding, tunnel, and surrounding soil
• Mechanical Design (not yet started)

– External shielding (based upon above design)
– Corebox

• Thermal considerations (cooling)
• Stress wave considerations
• Use ANSYS for detailed thermal and stress analysis

• Utilize FNAL Energy Deposition Group for shield design calculations 
• Use experience from MI abort core box design, SNS absorber designs 
• Utilize FNAL engineers with ANSYS and absorber design experience in 

mechanical design
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CONCLUSIONS

• Conceptual Design is maturing with critical parts moving 
forward so that major civil construction issues may be 
resolved.

• BNL Collaboration moving forward to:
– Review current conceptual design 
– Aid in optimization of foil-stripping injection 
– Investigate the potential for future stripping experiments at energies of 

up to 2.5GeV
– Produce a “laser profile monitor” for Meson test facility

• Although the design has developed substantially  since the 
2004 Workshop, the conclusions remain that although the 
injection design is not trivial, no fatal problems have been 
uncovered.
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Interface with Main Injector

FOIL

Injection Straight

Critical area

Potential Injection Absorber
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Civil Construction

•Optimize Injection Layout and transport line 
•Minimize impact of MI tunnel disruption
•Reduce civil construction costs

•Injection design/Transport design determine footprint of Linac
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Lorentz stripping in Chicane

Stripping length / Lifetime for 8 GeV H- Ions 
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Painting Geometry

37.4mm
13.6mm

160 mm

110 mm

146.4mm

34.4mm14.1mm

9.0mm 3σx +/- 1.5mm
3σy +/- 2.1mm

Start Paint

DC bump
End Paint

Linac 1.5 π-mm-mr
βx= 10m, βy = 20m

MI 25 π-mm-mr
βx = 50m, βy 20m

MI-10 CL 0mm

foil
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C1= removal/total offset
C2 = paint dist/total offset
M =  number of painting turns
N = turn number
Q= number of turns to remove from foil

For this case:
C1= 13.6
C2=34.7
Total offset 50 mm
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H- Transport Line – Current Status

β’tron momen
tum

momentum

MI

m
at

ch

match

De-buncher

• Footprint determined by 
MI Injection design

• 60 degree FODO lattice 
• 2 achromatic bend sections 

for momentum collimation 
(550G) - civil constraint

• Straight for β’tron
collimation

• Straight section for de-
buncher/stretcher

• Achromatic matching into 
MI (wide tuning range in 
beta at foil, with alpha =0)

• Quad gradient +/- 10 kG/m
-> 260 G @ 1”

• Aperture ratios 3σ/(w/2)
– Dipole: H 8.5/95 ,V 8.5/22
– Quad: H&V 8.5/38
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H- Transport Line- Technical Issues

• Control of stripping losses in transport line (addressed in 2004 Workshop)
– Lorentz stripping (next slide)  beam power loss  ~0.0016 W/m  (@134 kW)
– Black body radiation  (H. Bryant, C. Hill) ~0.11 W/m

• preliminary design of cold beam tube shield       ->  0.0001 W/m
– elliptical Al extrusion to fit inside 2X4 rectangular beam tube 

(1.75”x3.75”)
– Based on LHC cryostat shields cost ~ $30K-ish

– Vacuum stripping @10-7 to be ~0.013 W/m -> 0.002W/m) 
• Collimation (transverse and longitudinal beam shaping & machine protection)

– Betatron (utilize clever foil stripping system developed for SNS)
• Initial simulations-> collimator jaws set at 4σ
• Revisit simulations (using STRUCT and  ORBIT )

– Momentum (review in-line absorber design)
– Adjustable aperture for both foil and absorber
– Detailed foil stripper and absorber designs  have not yet begun (AD EDG)

• Detail design of new transport magnets, vacuum system, instrumentation
– No major technical issues anticipated
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Lorentz Stripping

Stripping length for 8 GeV H- Ions
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• Use expression from L. 
Scherk for rest frame lifetime 
of H- in applied magnetic 
field

• Calculate lab frame lifetime 
(βγτ)  and stripping length 
(βγcτ)

• Basic eq. not in question

• At dipole field of 550 G    Loss rate ~7.5E-9 /m
– With 1.54E14/1.5 sec  ~8E5 particles/m/s 0.001 W/m 

(comparable to vacuum with cold beam tube liner)
• At dipole field of 500 G Loss rate ~ 3.8E-10 /m

– With 1.54E15/1.5 sec ~ 3.9E4 particles/m/s 0.00005 W/m


